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The complex Stuart}Landau equation models a prototypical Hopf bifurcation in which, when
the control parameter exceeds a critical value, the null solution bifurcates into a "nite amplitude
time-periodic solution. We study the response of this equation to time-harmonic forcing in the
subcritical regime (i.e., before the bifurcation). We show that when a second parameter in the
Stuart}Landau equation passes a critical value, a portion of the solution surface as a function of
forcing frequency and amplitude becomes multivalued. For instance, at a "xed forcing ampli-
tude, one "nds a well-de"ned range of frequencies over which two stable periodic responses may
coexist, having di!erent amplitudes. We apply this result to predict the behaviour of the wake
downstream of an oscillating cylinder, and compare the predictions with experimental and
computational observations of such a wake. ( 2001 Academic Press
1. INTRODUCTION

THE COMPLEX STUART}LANDAU EQUATION has been widely used to model the shedding
of vortices in the two-dimensional wake of a cylinder at low Reynolds numbers. Speci"cally,
the di!erent coe$cients of the model have been measured from experiments (Sreenivasan
et al. 1986; Provansal et al. 1987; Schumm et al. 1994; Albarède & Provansal 1995) and
from numerical simulations (Dus\ ek et al. 1994). Two-dimensional #ows past a laterally
oscillating cylinder have also been the subject of extensive research. In particular, the
experiments of Bishop & Hassan (1964) have clearly shown jumps and hysteresis loops in
the resonance curves for the amplitude and the phase of the vortex shedding. These
resonances appear for particular excitation frequencies, and Stansby (1976) has shown the
existence of resonant horns where the wake is locked to the cross-#ow oscillation of the
cylinder. Di!erent modes of vortex shedding can be associated with these lockings
(Williamson & Roshko 1988); in particular, the classical BeH nard}von KaH rmaH n wake can be
excited among other nonsymmetric wakes. Visualization of moderate Reynolds number
0889}9746/01/040445#13 $35.00/0 ( 2001 Academic Press
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forced wakes shows a jump in the phase of the vortex shedding when the frequency of the
excitation passes through the resonance frequency (Ongoren & Rockwell 1988). The
di!erent phase lags between the laterally oscillating cylinder and the vortex shedding have
been associated with a competition between several mechanisms of vorticity generation
(Blackburn & Henderson 1999).

The present study is devoted to the theoretical analysis of the response of the forced
Landau equation and to the comparison of its predictions with experiments and numerical
simulations. We focus our attention on the subcritical regime, where the periodic solution is
damped when it is not excited. To our knowledge, the only attempt at modelling the
periodically forced wake by a forced Landau equation below the threshold has been by
Provansal et al. (1987). In this case, the forcing term which is added to the model is a simple
harmonic term, having a given amplitude and frequency. Above the threshold, additional
third-order terms are involved in the amplitude equation associated with the forced Hopf
bifurcation (Walgraef 1997). The solution is much more intricate in this case with the
possibility of the appearance of higher-order resonances and biperiodic behaviour. A com-
plete mathematical analysis of the di!erent possibilities has been provided by Gambaudo
(1985). In addition, numerical solutions of the forced Stuart}Landau equation in the
supercritical regime have been obtained (Olinger 1993) to establish that its underlying
dynamics are similar to those of the circle map.

In our work, we restrict our analysis to the subcritical regime of the Stuart}Landau
equation where locking is expected (Gambaudo 1985). We "nd that, due to the cubic
nonlinearity of the Landau equation, the resonance curve can exhibit a hysteresis loop in
a certain range of parameters. This behaviour is similar to the response of a forced harmonic
mechanical pendulum (Landau & Lifshitz 1976). We then compare our predictions against
experiments and numerical simulations. In both cases, we study the two-dimensional wake
of a circular cylinder subject to cross-#ow oscillations. Although the predicted resonance
below the BeH nard}von KaH rmaH n threshold is observed, no evidence of hysteretic behaviour
has yet been seen in the experiments and computations.

2. THE FORCED STUART}LANDAU EQUATION

The complex Stuart}Landau equation with time-periodic forcing is given by

dA

dt
"(a

R
#ia

I
)A!l

R
(1#ic) DAD2A#Fe*ut , (1)

in which A is a complex-valued function of time t and the parameters a
R
, a

I
, l

R
(l

R
'0) and

c are all real. The last term in this equation represents the forcing. We take the forcing
amplitude F and frequency u to be real.

In the absence of forcing, equation (1) represents the normal form of the Hopf bifurcation
which occurs at the critical value of the parameter a

R
"0. For a

R
(0, the null solution

A"0 is a stable solution of the unforced equation. For a
R
'0, this base state loses its

stability and the solution settles down to a time-periodic state with constant amplitude
DAD"(a

R
/l

R
)1@2, orbiting the origin in the complex plane with angular velocity a

I
!a

R
c.

Note that parameter l
R

is taken to be positive. The time-scale for the transient approach to
this "nal periodic state is given by a~1

R
.

In order to investigate the forced response of the system, we "rst non-dimensionalize
equation (1) so as to minimize the total number of parameters that need to be studied. Using
the natural scales of the system which are evident in the supercritical solution just discussed,
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and subtracting the constant rotation imparted by parameter a
I
, we de"ne the following

dimensionless (primed) variables:

t@,Da
R
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D)1@2A(t) e~*aI t, (3)
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Upon substitution into equation (1) we obtain

dA@
dt@

"sgn(a
R
) A@!(1#ic) DA@D2A@#F@e*u{t{,

in which sgn (a
R
) is the sign of the Hopf bifurcation parameter a

R
. In what follows, we shall

focus our attention on the forced response of the subcritical state a
R
(0. This corresponds

to the vortex shedding experiments and simulations which are also being reported in
Sections 3 and 4 of this paper. The supercritical case exhibits a much richer (and more
di$cult to analyse) variety of solutions; see Gambaudo (1985) for a detailed discussion.
Considering the subcritical case a

R
(0 only, we rewrite the last equation and drop the

primes from all the variables for clarity to obtain

dA

dt
"!A!(1#ic) DAD2A#Fe*ut. (6)

Three real dimensionless parameters, c, F and u, entirely determine the solution A(t).
Parameter c is an intrinsic property of the unforced system; for the supercritical state, it
would determine the frequency of the solution after the Hopf bifurcation. Parameters F and
u are simply the amplitude and reduced frequency of the time-periodic forcing. In the
following, we restrict our attention to the case F'0. The case of negative F is identical, but
with a corresponding sign change in A (i.e., with a phase di!erence of n).

2.1. PHASE-LOCKED SOLUTION

To obtain two real equations from the complex equation (6), we "rst write A(t) in the form

A (t)"o(t) e*((t),

where o(t)"DA (t)D is the real and nonnegative amplitude of the complex function A and /(t)
is its phase (also real). Substitution into equation (6) results in the pair of equations

oR /o"!1!o2#(F/o) cos(ut!/), (7)

/Q "!co2#(F/o) sin(ut!/), (8)

in which the overdot represents the time derivative. We now seek a solution of constant
magnitude whose phase is locked with the forcing, lagging behind it with constant angle /

o
.

In other words, we seek a solution of the form o"o
o
and /"ut!/

o
, where o

o
and /

o
are

constants. Such a solution would have to satisfy

0"!1!o2
o
#(F/o

o
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o
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u"!co2
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#(F/o

o
) sin/

o
. (10)
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Upon elimination of /
o

between equations (9) and (10) (by collecting the trigonometric
terms on one side, squaring and adding the two equations), a single algebraic equation for
the amplitude o

o
is readily obtained. Upon de"ning x,o2

o
, this equation reads

x[(1#x)2#(u#cx)2]"F2, (11)

which is cubic in x, with its solution depending on the three parameters, c, F and u, of the
original system. Of course, the only solutions which are acceptable are real and non-
negative. Furthermore, once a solution x"o2

o
has been found, the phase-lag /

o
can always

be obtained by solving

tan/
o
"

u#cx

1#x
. (12)

Being a cubic equation with real coe$cients, equation (11) may have up to three real
solutions, depending upon the parameters of the system. The parameter ranges for which
three real and positive solutions exist are of particular interest, since they suggest the
possibility of having multiple states of the system under identical forcing conditions.
Fortunately, equation (11) is simple enough that a complete analysis as a function of the
three independent parameters c, F and u is possible; this is what we now attempt.

Denote the left-hand side of equation (11) by g(x; c, u), i.e.,

g(x; c,u),x[(1#x)2#(u#cx)2]. (13)

The amplitude of the phase-locked solution is thus obtained from the positive solutions x to
g(x)"F2. Graphically, this can be achieved by plotting the function g (x) (for a given set of
parameters c and u) over positive x and considering the intersections of this graph with
horizontal lines which are drawn at height F2 above the x-axis. As it turns out, the cubic
function g (x) [which is asymptotic to (1#u2)x for small x and to (1#c2)x3 for large x]
can only have one of the two forms depicted in Figure 1. Namely, over the positive range of
x, the function g (x) is either monotonically increasing, as depicted in Figure 1(a), or it goes
through a local maximum and minimum prior to increasing inde"nitely as x increases, as
drawn in Figure 1(b). In the latter case, there is clearly a pair of values, F

.*/
and F

.!9
, such

that for F
.*/

(F(F
.!9

, the equation g (x)"F2 admits three positive solution for x.
To identify the region of the (c, u) parameter space within which the function g (x; c,u)

has a shape similar to that in Figure 1(b), let us "nd the position of the local maximum and
minimum of g (x). These are found by setting

Lg

Lx
"3(1#c2)x2#4(1#cu)x#(1#u2)"0. (14)

As such, the local extrema are located at

x
B
"

!2(1#cu)$J4(1#cu)2!3(1#c2) (1#u2)

3(1#c2)
. (15)

Evidently, in order that both x
~

and x
`

be positive, i.e. to have a local maximum and
minimum in g (x) over positive x, we must require that

!2(1#cu)'0, (16)

4(1#cu)2!3(1#c2)(1#u2)'0. (17)

Condition (16) requires cu(!1 which means that u and c must be of di!erent signs and
the magnitude of u must be larger than Dc D~1. Simultaneously, condition (17) must be met.



Figure 1. Possible shapes of the cubic function g(x): (a) single solution to g (x)"F2; (b) multiple solutions to
g (x)"F2.
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The latter can be written as a quadratic function of u in the form

(c2!3)u2#8cu#(1!3c2)'0. (18)

To analyse the parameter space further, we now restrict our attention to the case c(0.
There are two reasons for doing so. First, parameter c for cylinder wakes is known to be
negative. Secondly, since parameters c and u appear throughout the above only in the
forms u2, c2 and cu, any statement which is true for a given pair of values (c, u) is also true
for the pair (!c, !u). Therefore, the behaviour for positive c can be directly inferred from
the results obtained for c(0.

Based upon condition (16), for c(0, multivalued solutions to g (x)"F2 can only exist if
u'0. So, let us now consider the left-hand side (lhs) of condition (18) for positive u. The
coe$cient of u2 determines whether the parabola obtained when this lhs is plotted against
positive u points upward or downward. There are three possibilities to explore: (i) When the

coe$cient (c2!3) is negative, i.e., for !J3(c(0, the lhs of equation (18) monotonically
decreases from (1!3c2) to !R, as u goes from 0 to R. Even if this lhs starts out being
positive at u"0 [which is the case when (1!3c2)'0], it will eventually become negative
as u gets larger. Recalling that condition (16) required the magnitude of u to exceed Dc D~1 in
order to have multivalued solutions, it is easy to show that in this case, conditions (16) and
(18) cannot be simultaneously satis"ed and the solution to g (x)"F2 is always single-

valued. (ii) When the coe$cient (c2!3) vanishes, i.e., when c"!J3, the lhs of equation
(18) becomes a straight line when plotted against u, and it is always negative for positive
values of u. Therefore, condition (18) cannot be satis"ed and the solution to g (x)"F2

remains single-valued. (iii) Finally, when the coe$cient (c2!3) is positive, i.e., when

c(!J3, the lhs of equation (18) starts out negative at u"0, but it will eventually cross
zero and remain positive as u increases. Hence, condition (18) will be met for u larger than
a critical value (which is a root of the lhs, given explicitly below). In that range of u, the "rst
condition which required that u'Dc D~1 is also satis"ed and, therefore, multivalued
solutions to g (x)"F2 can exist.

These results can be summarized as follows. In order for the cubic equation g(x; c,u)"

F2 to admit multivalued solutions for x, parameter c must satisfy c(!J3 and u must be



Figure 2. The frequency}response curves, x versus u: (a) single-valued case, (b) multivalued case.
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larger than the positive root (in u) of the lhs of equation (18), i.e.,

c(!J3 and u'u
#3*5

,

J3 c!1

c#J3
. (19)

For any (c,u) which satisfy conditions (19), the graph of the function g (x) resembles Figure
1(b). There will then exist the pair of values

F
.*/

"Jg (x
`

; c,u) and F
.!9

"Jg(x
~

; c,u) (20)

with x
$

given by equation (15), such that for F
.*/

(F(F
.!9

, the equation g (x; c,u)"F2

possesses three positive solutions for the amplitude x"o2
o
. At exactly the critical value

u"u
#3*5

, i.e., just before multivalued solutions emerge, the corresponding critical forcing
amplitude is given by

F2
#3*5

"

!8

3J3

(c2#1)

(c#J3)3
.

2.2. RESONANCE

For a "xed forcing amplitude F, as the forcing frequency u varies, the amplitude o
o
"Jx

of the phase-locked solution also varies. The graph obtained by plotting the response of the
system (characterized by o

o
or x) as a function of the forcing frequency u is the frequency}

response curve. Note that under the conditions described above, this curve may be
multivalued over a certain range of frequencies. Let us now consider the problem of "nding
the forcing frequency at which the response has its largest amplitude. We de"ne this as
&&resonance'' for our nonlinear oscillator.

Equation (11) can be thought of as providing an implicit solution for the response x as
a function of frequency u for a "xed value of the forcing amplitude F. Typically, the
frequency}response curves which result may resemble those in Figure 2, depicted here
under the conditions when the solution is single-valued, [Figure 2(a)], or multivalued
[Figure 2(b)].

In either case, the maximum in the curve (resonance) is obtained by "nding the frequency
at which the derivative Lx/Lu vanishes. Given the implicit solution g (x; c, u)"F2, for
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constant values of parameters c and F, this derivative is found to be

Lx

Lu
"!

Lg/Lu
Lg/Lx

. (21)

The numerator Lg/Lu is simply given by 2x(u#cx), indicating that resonance occurs when
u"!cx. Therefore, at resonance, equation (11) reduces to

x
3%4

(1#x
3%4

)2"F2 . (22)

Once the solution x
3%4

(F) to this equation is obtained, the resonance frequency as a function
of forcing amplitude is given by

u
3%4

(F)"!c x
3%4

(F). (23)

For large F the solution behaves as x
3%4

&F2@3, whereas for small F its behaviour is like
x
3%4

&F2. More generally, the solution to the cubic equation (22) is given by

x
3%4

(F)"1
6
=1@3#2

3
=~1@3!2

3
, (24)

where

=,8#108F2#12(12F2#81F4)1@2 . (25)

As such, for a "xed c, there is a well-de"ned resonance curve in the (u,F)-plane over which
resonance occurs and the amplitude o

o
of the solution is a maximum. An explicit graph of

this curve for a typical value of c will be presented in a later subsection.
Since at resonance, u#cx"0, the phase-lag of the resonant solution is found from

equation (12) to be /
o
"0 provided we take F'0; note that besides satisfying (12), the

phase-lag must also be consistent with (F/o
o
) sin/

o
"u#cx and (F/o

o
) cos /

o
"1#x.

Upon recalling that in the Stuart}Landau equation, the function A can be thought of as
being proportional to &&velocity'' rather than &&displacement'', this behaviour is seen to be
consistent with standard linear oscillators for which the displacement lags the forcing by
a phase of n/2 while the velocity and the forcing are in phase at resonance.

We also make the observation that the points at which the denominator in equation (21)
vanishes are where the derivative of the frequency}response curve becomes in"nite. These
points are identi"ed by the vertical dashed lines in Figure 2(b). Evidently, having two such
points is a prerequisite for having a range of frequencies over which the solution is
triple-valued. The vanishing of this denominator is precisely the condition we posed earlier
[cf. equation (14)] to locate a local maximum and minimum of g (x) over positive x. It is also
possible to demonstrate that in the multivalued frequency}response curve, [Figure 2(b)] the
portion of the curve connecting the two turning points (tangent to the dashed vertical
curves) is unstable, whereas the upper and lower segments of this curve are stable.

2.3. RESULTS FOR C"!3

The small dimensionless parameter c in the Stuart}Landau equation describing the wakes
of cylinders has been measured for cylinders of di!erent aspect ratios. For an aspect ratio of
10, its value turns out to be approximately c"!3 (Albarède et al. 1995; Peschard 1995).
The experimental portion of this work deals with subcritical uniform #ow past a cylinder of
aspect ratio 10; therefore, let us consider more precisely the nature of the solution at
c"!3.



Figure 3. The minimum and maximum values of F (solid lines) which bound the region in which the solution is
multivalued for c"!3. The dashed line represents the resonance curve at c"!3.
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Since this value of c is less than the critical value !J3, we know that for large enough
frequencies, we will always have a window of forcing amplitudes over which multivalued
solutions exist. The critical value u

#3*5
which needs to be exceeded is given by equation (19)

and turns out to be u
#3*5

+4)8868. The corresponding critical value of the forcing at this
point turns out to be F

#3*5
+2)7482. For any u larger than u

#3*5
, there exist lower and upper

bounds F
.*/

and F
.!9

, given by equation (20), such that for values of F which are in
between, the solution surface is multivalued. In the (u,F)-plane, we can trace out the two
curves which provide the bounds on F as a function of u. We have done this in Figure 3 for
c"!3. The two solid lines which form a cusp at the critical point (u

#3*5
,F

#3*5
)"

(4)8868, 2)7482) in this "gure represent these bounds.
Also in Figure 3, we have traced out the resonance curve given by equations (22), (23) and

(25), for the case c"!3. The resonance curve enters the multivalued region as u and
F increase and remains there. That is, the maximum point in Figure 2(b) lies somewhere in
between the two turning points with in"nite slopes (when u and F are large enough). Lastly,

we show in Figure 4, the solution surface itself (o
o
"Jx versus u and F) for c"!3

obtained by plotting a family of solutions at di!erent frequencies as the forcing amplitude is
varied. It is clear that surface is folded and above the region bounded by the solid curves in
Figure 3, the solution is triple-valued. Of the three solutions, those with the largest and
smallest amplitudes are stable while the one in the middle is unstable.

3. EXPERIMENTAL OBSERVATIONS

As explained before, the parameter c is a constant which characterizes the limit cycle which
appears at the Hopf bifurcation. For the BeH nard}von KaH rmaH n wake, it has been measured



Figure 4. The solution surface o
o
(u,F) at c"!3.
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both experimentally and numerically. However, this value varies with the aspect ratio of the
cylinder that generates the wake. In our experiments, the cylinder has a diameter of 2 mm
and a length of 20 mm, giving an aspect ratio of 10 which, according to Peschard (1995) and
Albarède et al. (1995) gives a value for c close to !3. In this case, the critical Reynolds
number for the appearance of the vortex street is about 70. The #ow is generated in a water
tunnel and the cylinder is mounted on a support which can oscillate at a given frequency by
the use of an electric motor. In this study, only visual observations will be reported. These
visualizations are made by oxidation of a tin wire. As predicted by our theoretical analysis,
a strong resonance is seen when the forcing frequency is close to the natural frequency of the
wake. Figure 5 presents snapshots of the wake for di!erent cross-#ow oscillation frequen-
cies and for a Reynolds number equal to 60. On these images, the amplitude of the cylinder
oscillation is 3 mm (the corresponding nondimensional value for F is not known a priori
because we do not know how much energy is actually transmitted to the wake when
oscillating the cylinder). The resonance phenomenon is clearly evidenced by the shedding of
strong vortices when the excitation frequency approaches a value close to 1 Hz. In the "gure
caption, we also indicate the values of the non-dimensional frequency calculated using the
expected parameters of the Landau equation [see Peschard (1995), Olinger (1993)]. Scann-
ing the forcing frequency up and down does not reveal (at least visually) any hysteretic
behaviour. More experiments would seem to be necessary to con"rm this apparent devi-
ation from the Landau model prediction. Let us note in particular that the strong spatial
deformation of the wake, as it is visualized in Figure 5, is not taken into account in the
model. This e!ect might be avoided when applying a very weak forcing very close to the
threshold where the receptivity of the wake is large.



Figure 5. Visualization of the wake at Re"60 for di!erent exciting frequencies: (a) 0)52 Hz (u"!10); (b)
0)70 Hz (u"!7); (c) 0)95 Hz (u"!2)4); (d) 1)4 Hz (u"5)6).
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4 NUMERICAL SIMULATIONS

Two-dimensional numerical simulations were also undertaken to explore the frequency
response. These were done with a spectral-element code described in Thompson et al.
(1996), which employs a similar method to that used to examine the unforced post-
transition behaviour in Dus\ ek et al. (1994). Initial runs were performed to verify the chosen
domain size and mesh point distribution and density were adequate.

The system was forced by applying an oscillating cross-#ow velocity at the inlet and side
boundaries of the domain, i.e., at the inlet and side boundaries u"(1, (B/u) sin (ut)). The
cross-#ow amplitude is divided by u to maintain a constant acceleration forcing amplitude
as dictated by the Landau model. It is thus expected that there is a linear relationship
between B and F regardless of frequency. Note that in the numerical simulations, the
governing equations are rendered dimensionless using the diameter of the cylinder as the
length scale and the ratio of that diameter to the uniform #ow velocity as the time scale.

Initially, runs were performed to determine the values of the critical parameters in the
Landau model. Simulations at Re"50, 48 and 45, the "rst two starting from the two-
dimensional steady #ow and the last from the time-periodic #ow at Re"48, allowed the
transition Reynolds number to be determined as Re

#3*5
"46)7 from interpolation of the

measured growth rates. The dimensionless Landau constant was also evaluated for Re"50
and 48 by determining the di!erence between the frequency of oscillation in the linear
regime and at saturation. As in Dus\ ek et al. (1994), the response was monitored by the
vertical velocity at various points in the domain. For these two cases, the Landau constant
was determined to be c (Re"50)"!2)52 and c(Re"48)"!2)78. Thus, it is less than
the critical value of c

#3*5
"!J3 from the theoretical analysis [equation (19)] in this paper

and consistent with estimates from Dus\ ek et al. (1994). To examine the response in the
subcritical regime, simulations were performed at Re"44. At this Reynolds number, the
model parameters (scaled with the time-scale mentioned above) can be estimated by
extrapolation to be a

I
"0)3648, a

R
"!0)0057, c"!3)3 and l

R
"0)32. Again, the critical

parameter is the Landau constant, c, which indicates that the system should be hysteretic if
the forcing is above a critical value. The frequency response was determined numerically by
"xing the forcing level and stepping up from one forcing frequency to another after the



Figure 6. Numerical resonance curves for forcing amplitudes (B) of 0)01 (crosses), 0)03 (triangles), 0)10 (circles)
and 0)30 (squares). The Reynolds number is 44. The curves show the amplitude of the vertical velocity component

on the centreline 4 radii downstream of the cylinder centre.

Figure 7. Vorticity plots of the oscillating wake. The forcing amplitude is set to 0)01. The centre plot shows the
response at close to the optimal forcing frequency. The top and bottom plots show the wake for forcing frequencies

25% below and 25% above the resonant frequency, respectively.
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periodic asymptotic solution had been reached. This response is shown in Figure 6 for
forcing amplitude B"0)01, 0)03, 0)10 and 0)30. These curves show the amplitude of the
vertical velocity component at a point 4 radii downstream from the cylinder centre on the
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symmetry axis. The nonlinear shift of the maxima, as predicted by equation (23) and
observed in the experiments, is visible. Note that the sign of this deviation (here towards
higher frequencies) is opposite to that of parameter c in agreement with predictions.
Although the shift is in the right direction, it does not show the expected quadratic
behaviour predicted by equation (23) for low forcing amplitudes.

Figure 7 shows the wake vorticity pattern corresponding to forcing (from top to bottom)
at 25% below, equal to, and 25% above the resonant frequency. The asymmetry of the
response*characteristic of the presence of odd terms in the dynamical system*is again
evident through these visualizations; however, no hysteresis is observed.

5. CONCLUSION

The mismatch between both the experimental and numerical results, and the theoretical
analysis, is surprising. The study of Dus\ ek et al. (1994) indicates that the post-transition
behaviour obeys the unforced Landau equation to a high degree of accuracy. One possible
explanation is that higher-order terms in the Landau equation are not necessarily small and
may contribute to the saturated behaviour. This is suggested by the failure of the numerical
frequency}response curves to conform to the predictions of equation (23). If quintic and
higher-order terms cannot be neglected in equation (1), they will cause deviations from the
current predictions; preliminary numerical studies indicate that the predicted hysteresis can
easily be destroyed by the additions of such terms. Moreover, the value of c in the numerical
simulations was estimated indirectly based on the observed amplitude and frequency at
saturation; hence it relies on the higher-order terms being negligible.

Because the scaled critical value of F only depends on c, equations (3) and (4) suggest that
the dimensional critical forcing and the response amplitude both approach zero as the
Reynolds number approaches the transition value. In turn, this means that close to the
critical Reynolds number there should be some range of forcing for which high-order terms

can be neglected and hysteresis will occur, provided c(!J3. The numerical results
suggest that this range may be very small. Unfortunately, close to the transition Reynolds
number, and for very small forcing amplitudes, it takes many cycles for the transient
response to decay and hence it is di$cult to explore this region numerically. We are
currently attempting to obtain direct measures of the critical parameters of the Landau
model to further re"ne the predicted behaviour (if necessary including the e!ects of
higher-order terms). It will then be possible to better test the validity of the model by careful
comparisons with the numerical frequency}response curves. These results will be reported
elsewhere.
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